1 概述
建筑信息模型(BIM)为建筑工程设计领域带来了第二次革命,从二维图纸到三维设计和建造的革命,对建筑行业来说,BIM也是一次真正的信息革命。BIM在我国的全面应用为建筑业的发展带来巨大的效益,使设计乃至整个工程的质量和效率显著提高。BIM将直接促使建筑行业各领域的变革和发展;它将使建筑行业的思维模式及习惯方法产生深刻变化;使设计、建造和运营的过程产生新的组织方式和新的行业规则。
幕墙BIM是基于三维模型的幕墙信息技术,是采用集成的三维模型完整地表达幕墙定义信息,将设计、加工制作、安装施工等信息共同定义到三维数字化模型当中,以改变目前三维模型和二维工程图共存的局面,更好地保证幕墙定义数据的唯一性。幕墙BM提供了单一源定义,消除了潜在的三维模型和二维图纸之间的冲突;改变了传统的纸质介质的产品定义模式,方便了数据的管理,减少了很多重复性劳动;此外幕墙BIM还提高了信息传递的准确性和传递效率,使使用者能够更加直观、准确地获取各类信息。幕墙工程的BIM模型可以分解成若干个“单元”,每个单元以信息化的形式存在。类似建筑设计软件中的“族”和机械设计软件中的“产品”、 “部件”。通过对“单元”的预定义,将“单元”内的产品(或称为零件)的属性信息(生产企业、产品型号、商标、造价和性能指标等)、一般几何信息(构造尺寸、数量和材料等)和参数化信息(通过变量或公式能够计算的几何信息)进行设置,以便在幕墙的设计、加工制作、安装施工等各个环节达到信息的共享与重用。本文以目前比较流行的CATIA软件系统为例,研究幕墙BM模型的定制技术,并举例说明其应用。
CATIAV5-6系统是航空、汽车、机械、电子设备及建筑等领域应用比较广泛CAD(词条“CAD”由行业大百科提供)/CAM/CAE软件系统。它是一个模块化的软件,具有统一的用户界面、数据管理以及兼容的数据库和应用程序接口。采用特征造型和参数化造型技术,允许自动指定或由用户指定参数化设计、几何或功能化约束的变量化设计。它具有卓越的结构设计、机械产品设计、曲面造型、加工模拟、有限元分析、知识智能(参数化入数字化虚拟样机等强大的功能模块,为许多用户所青睐。CATIA V5的知识智能(参数化)模块功能强大,通过可视化的特征树及各种可视工具,使得三维参数化建模更加简单。CATIA V5的可视化工具能使设计人员在可视化的环境下,高速高效地完成三维建模工作[1-3]。CATIA系统还提供CAA(Component App|ication Architecture) RADE (Rapid Application Development Environment)[4]二次开发工具,采用了全新的、基于组件的开放式体系结构(Open Architecture Products)。应用了许多现代软件工程思想,虽然整个体系结构十分庞大,但结构清晰、合理,维护、开发、扩展方便,有着相当优良的扩展性能。它开放的组件应用架构解决方案,允许更多的第三方供应商针对用户的特殊需求进行定制。
2 信息化建模的特点
幕墙BIM模型需要定义属性信息(生产企业、产品型号、商标、造价和性能指标等)、一般几何信息(构造尺寸、数量和材料等)和参数化几何信息(通过变量或公式能够计算的几何信息),真中参数化信息是信息传递的关键,也是幕墙BIM的核心,因此需要重点研究幕墙的三维参数化建模技术。
幕墙三维参数化建模与二维参数化建模不同,其主要区别在于三维模型更能清晰地表达幕墙的构件(词条“构件”由行业大百科提供),其模型参数也能更好地反映实物特征。三维模型允许从任意角度观看,比二维模型更加直观,使设计人员能够将工作重点放在结构设计及其优化方面。参数化建模的特征参数选择非常重要,合理的特征参数能够方便地控制和生成实物的三维模型,特征参数发生变化能够直接地带动三维模型的协同变化。参数化技术给设计中的标准件、常用件和系列化产品的设计带来极大的便利,是近来提出的“大量定制”MC生产方式中敏捷设计的一项基础技术。三维参数化建模技术是幕墙设计的一项基础性的工作,它比二维参数建模更能体现产品特征,更适应时代发展的需要。它将极大地促进幕墙行业发展。
3 三维参数化建模的实现方法网
参数化建模的关键在于用参数、公式、表格、特征等驱动图形以达到改变图形的目的,在CAT IA V5中可通过如下的方法来实现。
3.1采用CAⅡ A CAA二次开发技术,进行三维模型参数驱动
CAA(Component Application Architecure)是法国达索公司为了用户在使用CATIA的过程中根据所要扩展的功能进行二次开发而提供的以VC++语言为基础的一系列函数库的总称[4]。CAA方法的核心思想是面向对象的程序设计。采用对象的嵌入(Object Linked Embedded)和连接以及组件对象模型(Component Object Modei)的应用,使得开发的过程能够轻松地实现标准化,较大程度地提高了程序的易用性和可扩展性。幕墙构件数量繁多,而且大部分构件类似,结构不一定复杂,但大量重复设计耗时耗力,因此如何快速地生成构件是一个重要的问题。采用CATIA的二次开发工具[4],通过参数化建模方法,可怏速驱动生成新的构件,并可进行三维零部件的参数驱动。
3.2利用系统参数与尺寸约束驱动图形
CATI A V5具有完善的系统参数自动提取功能,它能在草图设计时,将尺寸约束作为特征参数保存起来,并且在此后的设计中可视化地对它进行修改,实现直接的参数驱动。用系统参数驱动图形的关键在于如何将从实物中提取的参数转化为CATiA中,用来控制三维模型的特征参数。尺寸驱动是参数驱动的基础,尺寸约束是实现尺寸驱动的前提。CATIA V5的尺寸约束的特点是将形状和尺寸联合起来考虑,通过尺寸约束来实现对几何形状的控制。设计时以完整的尺寸参数为出发点(全约束),不能漏注尺寸(欠约束),不能多注尺寸(过约束、尺寸驱动是在二维草图Sketcher空间下实现的。图形完全约束后,其尺寸和位置关系才能协同变化,系统会直接将尺寸约束转化为系统参数。草图修改可通过编辑系统参数直接驱动几何形状的改变,为三维参数驱动提供基础。三维参数化建模的合理性很大程度上取决于二维图形中的尺寸约束与实物参数的符合程度。只有抓住CAT A建模特点并采取合理的二维和三维建模方法,才能建立理想的模型。
3.3 利用用户参数和公式驱动图形
CATIA V5不仅具有系统定义的参数,而且还有用户自定义参数。通过用户自定义参数和公式等工具,可以很方便地定制出客户所要的各种参数以及约束这些参数的公式。CATIA V5中有几何参数(如点、线、曲线、曲面等)、物理参数(如长度、质量、速度、温度、密度等)、无量纲参数(如整数、实数)、字符型参数及布尔型参数等40多种类型的参数可供用户自行选择。用户自定义公式是CATIA V5中联系系统参数与用户参数枢纽。用户参数定义后,可针对用户参数与三维模型中对应的特征参数建立相应的公式,从而通过用户参数驱动系统参数,进而控制图形的尺寸。
3.4 利用表格数据驱动图形
机械产品设计中,标准件、通用件的尺寸可通过查表获得,在CATIA V5中可应用表格驱动几何图形实现这一功能。应将与零件尺寸有关的标准数据以表格的形式存放在相应的文仵中,并建立表中数据与三维模型特征参数的联系。通过选择表中不同记录达到改变几何尺寸,获得所需零件的模型。在CATIA的参数化设计中,可以使用的图表有两种,一种是文本格式的图表文件,一种是Excle格式的图表文件。仅须将产品的特征参数制成文本型或Excle引型表格,通过CAT{AV5本身自带的工具Deggn Tab℃ 对表格的各条记录进行访问,从而达到修改尺寸、改变形状的目的。
3.5 利用规则与检验控制特征驱动图形
上一页12下一页