(一)引言
全球范围内,对
高层建筑火势蔓延的研究由来已久。在过往几十年里,对于如何控制火势的蔓延已经有很好的工程实践。众多国家和地区已经对幕墙层间缝的防火封堵工法采用了标准化试验。相关建筑及安全规范开始对带有幕墙的高层建筑作出规定,以确保生命和财产安全。
为了更好地理解火势在带有
玻璃幕墙的高层建筑中如何蔓延,我们需要想象这样—个场景:如果火灾发生在某个楼层,随着火势的蔓延,该楼层室内压力慢慢增大,幕墙中的玻璃在火焰的吞卷下破裂,从而使更多的氧气补充到室内,助长火势进一步增大,蔓延至上一楼层的板底和幕墙结构的内侧。而且,某束火苗可能从破碎的窗户窜出,开始侵袭上层幕墙结构的外侧。如果楼板和幕墙结构之间存在缝隙,火焰会迅速地从这个层间缝上窜到上一楼层(参见图1、对于这个挑战,需要合理地设计和安装一个层间缝防火系统,既可以在火灾全程保持稳定,又可以满足双面受火,避免火势竖向蔓延的要求。
由于很多幕墙结构的
建材并非
耐火材料,所以进一步加剧了火灾在高层建筑中的蔓延。诸如玻璃或铝质
型材通常会被整合到现代的幕墙结构中。通常情况下,这些材料会特意做得比较轻薄,从而削弱了他们的
耐火性能。—般情况下,玻璃会在受火后5~15分钟发生破碎,铝质型材在达到660° C时就会融化。尽管有时采用了被认为耐火性能更好的材料,但是,这些材料在实际火灾中往往都出现失效的情况,例如,花岗岩、大理石、石灰华或灰沙石等石质隔板或填充隔板本身是良好的耐火材料,不会燃烧。但是,在火灾中这些
板材受热后会产生破裂,甚至由于在各个方向产生的不同程度的延伸,或者
石材内含有一定的湿气,受热后发生爆炸。难道这就意味着这些材料不能采用?事实绝非如此。
最可行的办法是通过采用带有高温
绝缘材料的简单系统,提高这些构件的耐火性能,同时,正确安装防火封堵系统。本文就相关问题进行探讨,并将相关工程应用经验作为分享。
(二)层间缝防火封堵系统介绍
层间缝防火封堵系统,这一词迅速成为了防止高层建筑火势蔓延的同义词。层间缝防火封堵系统包栝耐火楼板组件、外墙组件和安装在外墙跟楼板间隙中的材料,这些材料避免了楼层与楼层间形成火势蔓延的通道。
某些国家采用了一些试验标准来评估层间缝防火系统的相关性能。其中一个标准是美国的《层间缝耐火性能的测试标准(ISMA)》ASTM E2307-10,该标准采用一个两层的中等比例结构模型来评估用于高层建筑的层间缝防火封堵系统的耐火时效(参见图2及图3、该模型的前面是一个玻璃幕墙结构;上层是观察室,下层是实验室(火炉),上、下层间是钢筋混凝土楼板。层间缝防火系统安装在楼板与幕墙的分隔带之间的水平缝隙中(参见图4)
试验结构安装完毕后,点燃实验室中的火炉(参见图5)。5分钟后,玻璃幕墙外用于模拟窗户破碎后火焰上窜的另一个火源被点燃(参见图6)。也就是说,幕墙结构外部构件直接受火的同时,内部的火源已经袭击到幕墙结构的内部构件、楼板的底部和层间缝防火封堵系统的相关材料。试验终止是按试验失效现象出现或达到预期的耐火时效后终止。试验失效,是指在观察室出现火焰穿过了防火封堵系统的现象。另外,如果出现任何热点,也视为试验失效。通过在观察室的层间缝防火系统上覆盖一张棉褥,并保持30秒来观察防火封堵系统是否存在裂缝或孔洞。如果棉褥产生燃烧,防火封堵系统也被认为是失效的。如果封堵系统不能有效减少过热的玻璃传来的热量,棉褥会过早燃烧(参见图7及8)。
在试验过程中,通过监测背火面的温度来分析热量的扩散情况。检验出来的耐火时效和耐热时效是根据ASTM E2307-10的相关步骤得出的。耐火时效,是防火封堵系统阻碍火焰通过的时间;耐热时效,是测量系统中热量传递的效果。大部分幕墙防火封堵系统由于采用了
导热性能良好的铝质型材或
锚固件,其耐热时效不超过15到30分钟,耐火时效通常可达2小时或以上。
(三)层间缝防火封堵系统的构造
2,1
矿棉隔板的安装
最常见的带传统(难燃材料,如玻璃、
铝材或石材)分隔带的铝质框架幕墙结构采用耐高温的矿棉隔板。矿棉隔板采用
矿渣棉或
岩棉做成,能够抵受高达100度的高温。通常用矿棉隔板(通常密度为96~128kg/m3)包裹分隔带周围幕墙框架的竖向和水平构件。(参见图9)有各种不同的方法来安装矿棉板。有时采用
钢板,但是,通常情况下钢板的作用只是美化分隔带的造型;有时通过在竖向构件之间的分隔带上会安装一系列水平的钢构件;或者通过一些钢
夹具和钢钉来安装固定矿棉板。除了用钢锚钉和保护罩固定矿棉板外,通常还可以在搭接处用带大号钢垫圈的钢
螺栓或杯形焊钉把矿棉板固定在
角钢、钢板或
槽钢上。这个幕墙的矿棉隔板是—个至关重要的构件。在幕墙外部的
保温层掉落后,尽管周围的铝质型材和隔板随之受热融化掉落,但矿棉隔板仍可在防火封堵系统受火的整个过程中保持完整性。
上一页12下一页