简介:对钢混结构现代
抗震思路及我国设计规范
抗震设计方法的理解和讨论
关键字:抗震,规范
在二十世纪五十年代,当美国的权威人士G.W.Houser导出了第一条地震反应谱和对地震激励下的
弹性反应规律的研究很快被学术界接受后,人们很快发现了一个与当时的抗震设计方法相矛盾的问题,那就是例如对一个第一振型周期为0.5s~1.5s,阻尼比为0.05的结构,结构地震反应加速度约为地面运动峰值加速度的1.5~2.5倍,比如赋予上述结构一个不大的地面运动加速度0.15g,则根据反应谱导出的结构反应加速度已达到0.23g~0.375g,而世界各国当时的设计规定中一般用来确定水平地震力大小的加速度只有0.04g~0.15g,但让人不解是,震害表明,虽然设计用的反应加速度很小,但结构在地震中的损伤却不太大。这么大的差距是不能用安全性或设计误差来解释的,于是,各国的学术界加紧了对这一问题的研究,大家通过对单自由度体系的屈服水准、自振周期(弹性)以及最大非弹性动力反应之间的关系;同时还研究了当地面运动特征(包含场地土特征)不同时,给这种关系带来的变化,我们把这方面的研究工作关系其中R是指在一个地面运动下最大弹性反
应力与非弹性反应屈服力之间的比值,称为弹
塑性反应地震力降低系数,简称地震力降低系数或者反应调节系数;µ为最大非弹性反应位移与屈服位移的比值,称为位移延性系数;T则为按弹性
刚度求得的结构自振周期。研究表明,对于长周期(指弹性周期且T>1.0s)的结构可以适用“等位移法则”,即
弹性体系与弹塑性体系的最大位移反应总是基本相同的;而对于中周期(指弹性周期且0.12s
变形能等于同一地震地面运动输入下的弹性变形能。
之所以存在上诉规律,我们应该注意到钢筋混凝土结构的一些相关特性。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力不会下降的属性。这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。在非弹性变形过程中,外力做功全部变为热能,并传入空气中耗散掉。
我们可以进一步以单质点体系的无阻尼振动来分析,在弹性范围振动时,惯性力与弹性恢复力总处于动态平衡状态,体系能量在动能、势能间不停转换,但总量保持不变。如果某次振动过大,体系进入屈服后状态,则体系在平衡位置的动能将在最大位移处转化为弹性势能和塑性变形能两部分,其中,塑性变性能将耗散掉,从而减小了体系总的能量。由此我们可以想到,在地震往复作用下,结构在振动过程中,如果进入屈服后状态,将通过塑性变性能耗散掉部分地震输给结构的累积能量,从而减小地震反应。同时,实际结构存在的阻尼也会进一步耗散能量,减小地震反应。此外,结构进入非弹性状态后,其侧向刚度将明显小于弹性刚度,这将导致结构瞬时刚度的下降,自振周期加长,从而减小地震作用。
1 我国现行抗震设计规范中的不足之处
抗震规范规定,我国的抗震设防目标必须坚持“小震不坏,中震可修,大震不倒”的原则,而建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定;抗震措施,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,抗震措施,一般情况下,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。丙类建筑应属于甲、乙、丁类以外的一般建筑,地震作用和抗震措施应符合本地区抗震设防烈度的要求。我们知道,一栋建筑在大震下能否不倒,已经不是看其承载力的大了了,而是看它的延性是否能够到达设计要求。由上面的建筑物抗震类别划分可以看出,我们对甲、乙、丙、丁建筑物延性的要求是依次从高到低的,此时,结构的延性实际上是由其抗震措施来决定的,现以一栋乙类建筑和丙类建筑为例:
上一页1234下一页