BIPVT即光电光热建筑一体化。
光电建筑 (BIPV)在实际运行中,光伏电池的光电转换效率随着工作温度的上升而下降。如果直接将光伏电池铺设在建筑表面,将会使光伏电池在吸收太阳能的同时,工作温度迅速上升,导致发电效率明显下降 。理论研究表明:标准条件下,单晶硅太阳电池在0度时的最大理论转换效率可到30%。在光强一定的条件下,硅电池自身温度升高时,硅电池转换效率约为12%一17%。照射到电池表面上的太阳能83%以上未能转换为有用能量,相当一部分能量转化为热能,从而使太阳能电池温度升高,光电电池温度每升高1℃,光电转换效率下降0.5%。
若能将使电池温度升高的热量加以回收利用,使光电电池的温度维持在一个较低的水平,既不降低光电电池转换效率,又能得到额外的热收益,于是太阳能光伏光热一体化系统(PVT系统)应运而生。这种既能发电又能提供热能的新型的太阳能利用系统即为光伏光热一体化(PVT)系统。将光伏光热一体化PVT系统应用到建筑上,在建筑的外维护结构外表面设置光伏光热PVT组件或以光伏光热PVT构件在提供电力的同时又能提供热水或实现室内采暖等功能,解决了光伏模块的冷却问题,改善了建筑外维护结构得热,甚至可以使建筑物的室内空调负荷的减少达到50%以上,增加了BIPV的多功能性,为建筑节能和推广BIPV系统提供了一种新的思路。在BIPV基础上发展了光伏光热建筑一体化BIPVT系统。BIPVT(含BAPVT)也随之应运而生。BIPVT存在着两种能量收益即电能和热能,能同时满足建筑的不同能耗需求,这就决定了BIPVT系统不同于传统的单一的BIPV系统和单一太阳能热水系统。光伏光热建筑一体化BIPVT是BIPV概念的延伸和拓展。是新一代太阳能光电建筑。